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Survival probability with random-force-dominated dynamics in the presence of traps
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We consider a second-order process driven by Langevin dynamics without damping. Using the
method of bounds, we show that in a one-dimensional system having a uniform distribution of traps, the
asymptotic value of the average survival probability goes as exp( —ct%$).
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INTRODUCTION

Recently [1-3] there has been some interest in the dy-
namics of particles moving in the field of a random force.
In such systems particles execute random motion under
the effect of a Gaussian random force, which is assumed
to have 8 correlation in time (white noise). The underly-
ing dynamics is the Langevin type given by the second-
order process

mx=f(t), (1)
where f(2) is the random force satisfying

(f(n)=o0, (2a)
and

(f(Of())=C8(t—1t') . (2b)

Equation (1) is a zero damping (y —0) limiting case of the
Langevin equation

mX+yx=f(t). (3)

There is, however, some controversy regarding the sur-
vival probability of particles undergoing such random
motion in the presence of stationary traps uniformly dis-
tributed in a one-dimensional system. Using numerical
simulations and scaling arguments, Araujo et al. [1] have
found an asymptotic relation for the survival probability
(S(t)) ~exp(—ct®®), whereas Heinrichs [2], using an
analytical approach, obtained (S(#)) ~exp(—c't).

In this paper, using the method of bounds, we show
that the survival probability {S(#— o)) satisfies the ine-
qualities

In{(S(¢))
€ =- 106

=C,, 4)
where C, and C, are constants, independent of time.
This agrees with the asymptotic behavior obtained by
Araujo et al. and is different from that obtained by
Heinrichs. We believe that the boundary conditions used
by Heinrichs for perfect absorbers situated at x ==*¢, i.e.,

P'(£,t)=0, (5

[where P’(x,t) is the marginal probability distribution at
x] are in error. The proper boundary conditions to be
used are
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P(§,v,t)=0, v<0
(6)
P(—¢&,0,0)=0, v>0

[where P (x,v,t) is the joint probability distribution at x].

We were, however, unable to solve this problem using
these boundary conditions. Therefore, we obtained lower
and upper bounds to the survival probability. Before
describing the method used to obtain the bounds, we give
a brief derivation of the equation satisfied by the proba-
bility density function of a particle following the dynam-
ics given by Eq. (1).

At any time ¢, let P(x,v,t) be the probability density of
a particle with velocity v being found at x. We consider
the dynamics given by Eq. (1) as the limit of a process
defined as follows. The particle is subjected to random
accelerations a;’s which are constant over a time interval
(j —1)At-jAt. The a;’s are identically distributed in-
dependent random variables obtained from a Gaussian
distribution p (a;).
172

plaj)= exp(—a}At /1) . @)

At
2\
Therefore we can write

M .
P(x,0,0)= [[ [pla;)da;8 [x—— S a,(At (M —j)
J=1 J
J

M denotes the total number of kicks undergone by the
particle up to time ¢ (=MAt). Taking the double
Fourier transform of P(x,v,?),

Blky,ky,t)= [ [ P(x,v,0explikx +ik,v)dx dv .
)
Using Eq. (8) we obtain
P(k,,k,,t)=exp[ —(AAt /4){kIM>At /3 +kIM
+k,k,M?At}]. (10)
Using M At =t we get
P(ky,ky,t)=exp[ —(AAt /4){(k,+k t /2)*
+k2t2/12}] . (11)
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Taking the inverse transform gives

P(x,0,0)=(1/t})exp[ —av?/t —a,(v+ax/t)*/t] .
(12)

This equation satisfies the differential equation (3.27) of
Masoliver [3]. Defining the transformation y =v +ax /¢
and ¢(y,v,t)=tP(x,v,t), we get

o(y,v,t)~

which satisfies the partial differential equation

% ‘Q ‘—Q (14)
ot 29p2

(ay/t)exp[ —ay?/t—aw?/t], (13)

Although Eq. (14) is .derived for a particle starting at
x =0 with velocity v =0 it is easy to see that this equa-
tion still holds for x =x, and v=v,, with v and y re-
placed by V and Y, respectively, where

V=v-—u,, (15a)
X=x—vot—Xxg, (15b)
and
Y=V+aX/t=v—votax/t —vyg—ax,/t
=y —Yo > (16)

where
yo=(1+ayt+axy/t .

A particle starting at x =x, and v
satisfies the following equation:

We now describe the methods used to obtain the lower
and upper bounds.

=v,, therefore,

LOWER BOUND

Consider a particle in a trap-free region of length 2L
with traps at x =1 L. The quantity of interest is the sur-
vival probability of the particle after a large time ¢,. To
obtain the lower bound to this we divide time ¢, into N
intervals of time 7, such that N7=t,. We require the fol-
lowing two conditions to be met.

(i) During each interval 7, the particle should not go
outof (—L,+L)and (—v,,+v,).

(ii) At the end of 7 it should be found in (—
(—xg,Xxg).

vg,Vq) and

For the present, x,, vy, and v, are arbitrary. Condi-
tions on these quantities will be imposed later.

We first consider the survival during a specific time in-
terval [say, i7<t =(i +1)r]. At the beginning of this in-
terval (i.e., at t=i7) the particle may be anywhere be-
tween —x, and +x, with a velocity between —v, and
+vy. Clearly the worst case (i.e., the lowest survival
probability) will be if we take the initial position at x (or
—Xx) and initial velocity as vy (or —vg).
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Because of condition (1) the following restrictions are
imposed on the transformed variables ¥ and Y. During
the time interval i7 <t < (i +1)7 the transformed velocity
V satisfies the inequalities

—v, V=V =v,—v,. (18)

The condition on Y is more complicated since it depends
on both v and z. At a transformed velocity V at time ¢,
we have the inequalities

v—aL/t—(1+ay—ax,/t <Y <v+aL /t—(1+a)y,
—axy/t . (19)

It is not possible to solve Eq. (17) with the boundary con-
ditions imposed by the inequalities (18) and (19). Howev-
er, since our interest here is in obtaining a lower bound,
we make the following simplifications. First, we take

vo<<v; and x,<<L, but still v,/vy,=0(1) and
L /x,=0(1). Also, we define

VT Uy=YVy , (20a)

alL —xy)=nL , (20b)
and

v H(1+ay=nv, . (20c)

We now impose the boundary condition that ¢( Y, V,¢)=0
at the rectangle (assuming that L /7>v,) delineated by

—yv SV =yv,, (21a)

-Y, Y=Y, (21b)
where

=n(L/T—v,). (21c)

As pointed out earlier, the boundary condition
¢(Y,V,t)=0 for all values of ¥V is not correct, but we now
show that use of this boundary condition [instead of the
true one given by Eq. (6)] leads to a lower value of ¢ and
therefore it may be used in the lower bound. For the pro-
cess under consideration in which the particle gets a con-
stant (random) acceleration during a period At, we have

P,(x,v,k,Q,)

:P[(X —vAt —O.Sak_lAtz,U —akﬁlAt,k —I,Q) y

where kK —t /At and P,(x,v,k,) is the value of P(x,v,t)
[Eq. (12)] for the realization Q.

It can be easily shown that by expanding P, in a Tay-
lor series and averaging over a;, we get Eq. (3.27) of
Masoliver [3]. P, may be considered as the limit of the
following equation where x and v have been discretized.

( ’]’k )= 2 2 A, ' lj(ak )P (i ,], —1,Q),

i'=—N j'=—M

where i =x /Ax, j =v/Av. The coefficients 4 depend on
the type of interpolation used. It is possible to keep all
the A’s non-negative (for example, by using a linear inter-
polation formula). The true boundary condition may be
incorporated by writing
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A =0 for all i,j and for j'=0,

—N’j'rixj
Ay ;=0 for alli,j and for j'<0 .

Use of ¢(Y,¥,t)=0 implies use of the boundary condi-
tion

Ay ;=0 forallij, and Jj' .

Since all P,’s are positive, the use of the boundary condi-
tion ¢ =0 clearly leads to lower values of P, and hence to
lower values of ¢ also. Therefore the use of this bound-
ary condition is justified in obtaining a lower bound.

Note that the rectangle implied by the inequalities
(21a) and (21b) is smaller than the parallelogram implied
by the inequalities (18) and (19) at all times
[itr<t<(i+1)r]. The probability of a particle being
found in dV about ¥ and dY about Y at the end of time 7
with the above boundary conditions is

oWV,Y,7)dvVdY ~(dVdY /v,Y,)
Xcos(mV /2yv,)cos(mY /2Y )
Xexp[ —(m?r/yi)—(m*r/Y?)] .
(22)

By replacing ¥ and Y in terms of v and x we get the prob-
ability S (7, L) so that the particle at the end of time inter-
val 7 is found in (—vg,v4) and (—xy,x,) [without going
out of (—L,L) and (—v,v,) during this interval]. This is
given by

Yo %o
S(r,L)> f_%f_xo(dx dv/mv,Y,)
Xcos(mv /2yv;)cos(wY /2Y )
Xexpl —(m*r/yw})—(7*r/Y])] .
(23)
The above integral can be shown to be
~(1/ Ayexp[(m*r/y})—(w?r/Y])], 24
where A4 is O(1) because we have chosen v, /v, and
L /x, both tobe O(1).
So at t =t, after N steps of 7, the probability of sur-
vival S (#y,L) is given by
S(ty,L)=[S(r,L) ¥
=exp[(—m*ty/y})—(7?ty/¥Y?)—NInd] .
(25)

To get the average survival probability we multiply
S(ty,L) with exp(—2wL)dL (the probability to get a
trap-free region of length 2L with traps at its boundaries
at x ==*L), and integrate over L from the limits — o to
+ . Here o is the concentration of traps per unit
length. Now maximizing over 7 and v; and evaluating
the integral over L by the method of steepest descent we
get

T~t3%, L~t3%, v, ~13?,
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and

(S(ty)) Zexp(—C,t39) . (26)

UPPER BOUND

As in the case of the lower bound, here also we divide
the time ¢ into N equal intervals of duration 7 each. We
can easily obtain the probability S(7,L) that a particle
starting at x =0, v =0 at the beginning of each interval in
an infinite medium without any absorbers will be within
the interval —L <x <L at the end of time 7. Clearly this
probability will be greater than the probability of a parti-
cle starting at x =0, v =0 with absorbing boundaries at
x =xL, since in the former case some particles would
have gone out of the interval (—L,L) and come back.

S(r,L)< [ _LL(I/ 2md T S)exp(—x2/drdx ,  (27)
where d is a constant of O (1). Defining

Z=L/Vd7"?
and

E(Z)=2foz(1/x/ﬁr)exp(—x2/2)dx ,
we get
S(r,L)Y<E(Z),
and after time ¢, =N, we have the survival probability
S(ty,L)=[E(Z)]V.
Averaging over L as before,
(S(t5)) = [ [E(Z)exp(—20L)dL
= [exp(NInE[Z]—20L)dL . (28)

We note that most of the contribution to the integral
comes from values of L given by

[toexp(—Z2/2)/E(Z)V2md 7°]=0 . 29
Now, minimizing over 7, we get
(to/)nE(Z)

+3[ty/TE(Z)]lexp(—Z2/2)L /V2md 7#°=0, (30)

ie.,

In[E(Z)]+3exp(—Z?%/2)Z/E(Z)=0 . (31)
The graphical solution of Eq. (31) gives

Z~0.3=0(1).
Therefore,

L/r5=

Substituting the value of Z in Eq. (29), we get
r~1$4 , L~rl5~1$6

Substitution of these values of L and 7 in Eq. (28) leads to
the inequality
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(S(ty)) <exp(—C,t39) . (32)

Note that we have proved the above inequality, assuming
that the particle starts from x =0, v =0 at the beginning
of every time interval. In actual practice, however, it has
a probability distribution in x and v both. It is easy to
show (as indicated below) that the assumption of x =0,
v =0 1is an overestimate.

First, for a particle starting at x’ with initial velocity v’
in an infinite medium, the probability distribution func-
tion at time ¢ is given by
P(x,t/x',v")~(1/t")exp[ —(x —x'—v't)?/t3] .  (33)
The probability of finding the particle within (—L, +L) is
therefore

Yo *o0 L ©
= I’ I, P , l, ’
3 f_Lf_wp(x v, 7)P(x,7/x",v")

VoY TXo

Xdx drdv'dx’, (34)
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where p(x',v’,iT)dx'dv’ is the probability that at time i7
the particle was in x' and dv’ about v’. Because of the
symmetry of the problem,

p(x'v'it)dx'dv'=p(—x',—v',it)dx'dv’ . (35)

Using this as well as the inequality,
fa exp[ —(z —~a)2]dz+fa exp[ —(z +a)?)dz
—a —a
<2 [ exp(—z%dz, (36)
—a

we obtain the desired result, namely that the assumption
of x'=0, v’=0 always gives an overestimate. Combining
this result with the inequalities (26) and (32) we get the
result for ty— oo,

In(S(t,))
<K< <

1= =Cy .
10:6
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